onde S.

Pertanto, utilizzando appositi formalismi è possibile stabilire una relazione (analiticamente complessa ma diretta) fra la forma della curva di dispersione e la velocità delle onde S nel sottosuolo. Tale relazione consente il calcolo di curve di dispersione teoriche a partire da modelli del sottosuolo a strati piano-paralleli.

L'operazione di inversione, quindi, consiste nella minimizzazione, attraverso una procedura iterativa, degli scarti tra i valori di velocità di fase sperimentali della curve di dispersione e quelli teorici relativi ad una serie di modelli di prova "velocità delle onde S - profondità".

12.4.2 STRUMENTAZIONE UTILIZZATA

- Sismografo Ambrogeo Echo 2002 seismic unit
- Numero dei canali 36
- A/D conversione 16 bit
- Geofoni verticali da 4.5 hz
- Energizzazione per Masw Massa battente (mazza da 8 kg)

12.4.3 METODOLOGIA DI ACQUISIZIONE DATI

I geofoni sono stati disposti sul terreno quindi si è energizzato tramite mazza da 8 kg; sono state effettuate registrazioni di 1 sec.

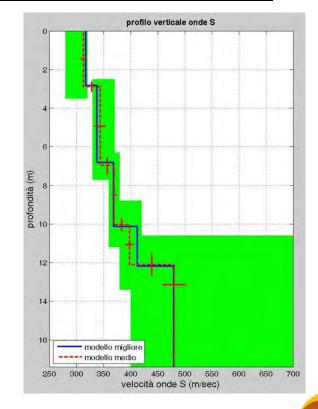
12.4.4 ELABORAZIONE DEI DATI

L'analisi ed interpretazione delle tracce è avvenuta tramite software Winmasw 1.7 ella Eliosoft.

12.4.5 DATI STRUMENTALI MASW - INTERPRETAZIONE

Modello migliore

VS (m/sec): 317.5402 337.7623 368.5127 412.7428 479.6736


spessore (m): 2.8291 3.9948 3.3189 2.0569

curva di dispersione (frequenza - velocità di fase onde di Rayleigh)

modo: 0 (modo fondamentale)

modello migliore

f(Hz)	VR(m/sec)	
5.71783	431.1964	
9.29688	414.9798	
12.2252	392.2964	
15.2619	365.9204	
19.0579	342.8555	
23.9384	327.4465	
29.3612	318.8589	
35.977	313.115	
41.3998	310.0997	
46.1719	308.1099	
52.0285	306.2073	
56.1498	305.127	
59.6204	304.3479	

VS 30 = 418m./sec

12.5 STIMA DELLA CATEGORIA DI SOTTOSUOLO

In base ai risultati ottenuti dall' indagine effettuata è stata calcolata la velocità del sottosuolo che risulta pari a :

$VS 30 = 418 \, m./sec$

Di conseguenza, in base a quanto fin qui detto ed al fatto che non sono presenti contatti con materiali litoidi nei primi 30 m, i terreni in studio si possono ritenere appartenenti alla seguente categoria di suolo di fondazione:

<u>CATEGORIA B:</u> Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_{s30} compresi tra 360 m/sec e 800 m/sec (ovvero $N_{spt,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fine).

Di conseguenza, in base alle analisi sopra esposte, è possibile riassumere per i terreni in studio le categorie individuate:

- Zona sismica: 3S;
- Categoria di sottosuolo: Categoria B;
- Categoria topografica: T1;
- Coefficiente di amplificazione topografica: ST = 1.0.

12.6 STIMA DELL'ACCELLERAZIONE MASSIMA E DEL COEFFICIENTE SISMICO ORIZZONTALE KH

Per ottenere il valore del coefficiente sismico orizzontale kh, si deve prima valutare l'accellerazione orizzontale massima attesa al sito a_{max} :

$$a_{max} = Ss ST a_g$$

in cui: - a_g = accellerazione orizzontale massima attesa su sito di riferimento rigido;

- Ss = coefficiente di amplificazione stratigrafica, la cui espressione è riportata nella Tab. 3.2.V del D.M. 14.01.2008;
- ST = coefficiente di amplificazione topografica.

Da qui si ottiene:

Kh =
$$\beta$$
s a_{max}/g

in cui g è l'accellerazione di gravità e β s = coefficiente di riduzione dell'accelerazione massima attesa del sito riportato nella seguente tabella:

•	Categoria di sottosuolo	
	Α	B, C, D, E
	βs	βs
0.2 <a<sub>g(g)≤0.4</a<sub>	0.30	0.28
0.1 <a<sub>g(g)≤0.2</a<sub>	0.27	0.24
a _g (g)≤0.1	0.20	0.20

Pertanto, per il terreno in oggetto in relazione alla localizzazione geografica, si hanno i seguenti parametri sismici:

